Der Krankenhauskeim Pseudomonas aeruginosa kann gerade bei geschwächten Menschen unter anderem schwere Wundinfektionen sowie Infektionen der Lunge und der Harnwege auslösen. Pseudomonas schafft es dabei immer wieder, Angriffe des Immunsystems und Antibiotika-Therapien zu überdauern. Ein Schlüssel zum Erfolg dieses hartnäckigen Erregers ist sein komplexes Kommunikationssystem: Über verschiedenste Signalstoffe stimmen sich die Bakterien untereinander ab und steuern so auch Infektionsprozesse.

BSN

Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig und des Helmholtz-Instituts für Pharmazeutische Forschung Saarland (HIPS) in Saarbrücken haben nun herausgefunden, wie die Bakterien die große Vielfalt an Signalmolekülen herstellen: Indem ein einziger Proteinkomplex seine Form verändert, kann er Moleküle unterschiedlicher Größe zu Signalstoffen verarbeiten. Wenn es gelingt, einen Hemmstoff für diesen Komplex zu entwickeln, könnte dessen Bewegung eingefroren und die Kommunikation der Bakterien unterbrochen werden.

Pseudomonaden können sich überall ansiedeln

Mithilfe verschiedener Tricks passt sich der Krankheitserreger Pseudomonas aeruginosa (P. aeruginosa) seiner Umgebung perfekt an. Ob Lunge, Auge, Harntrakt, eine offene Wunde oder ein Implantat – Pseudomonaden können sich überall ansiedeln und vermehren. Sie schaffen es sogar, sich gegen die meisten Antibiotika zu behaupten, indem sie sich entweder in einem dichten Biofilm abschirmen oder die Giftstoffe einfach mit kleinen Pumpen aus ihrem Innern befördern. Zu welchen effektiven Überlebensstrategien die Bakterien greifen, stimmen sie untereinander ab. Dazu setzen sie verschiedenste Signalmoleküle frei, die beim Überschreiten eines bestimmten Grenzwertes („Quorum“) die entsprechende Reaktion der Bakterien auslösen. Diese Art der Kommunikation wird „Quorum Sensing“ genannt – und zu allem Überfluss besitzt P. aeruginosa dafür gleich drei verschiedene Systeme, die miteinander in Verbindung stehen.

Pseudomonas aeruginosa.
Der Krankenhauskeim Pseudomonas aeruginosa schützt sich in dichten Biofilmen vor Antibiotika und Angriffen des Immunsystems (grün = lebende Pseudomonas-Zellen; rot = tote Zellen).TWINCORE/Janne Thöming

Ihre Anpassungsfähigkeit macht P. aeruginosa besonders schwer zu behandeln. Daher suchen Forscher weltweit nach Eigenschaften, die für diese Bakterien spezifisch sind und sich als Angriffspunkte für neuartige Medikamente eignen. Ein vielversprechendes Ziel ist eines der Kommunikationssysteme – das sogenannte pqs-System (für Pseudomonas Quinolone Signal), das in dieser Form nur in P. aeruginosa vorkommt. Schon lange ist bekannt, dass dieses System mit einem breiten Spektrum von Signalmolekülen arbeitet –nicht aber, wie die Vielfalt dieser Moleküle im Detail entsteht. „Seit einigen Jahren wissen wir, dass ein Komplex aus den Proteinen PqsB und PqsC für die Signalvielfalt bei Pseudomonas aeruginosa verantwortlich ist“, sagt Prof. Wulf Blankenfeldt, der am HZI die Abteilung „Struktur und Funktion der Proteine“ leitet. „Dabei dient PqsB als Stabilisator, während PqsC die chemische Reaktion durchführt: Es bildet Moleküle ähnlicher Struktur mit unterschiedlich langen Fettsäureanhängen, wobei die genauen molekularen Grundlagen dafür bislang unbekannt waren.“

Um dem vielseitigen Proteinkomplex in die Trickkiste zu schauen, hat Florian Witzgall, Doktorand in Blankenfeldts Abteilung, den Proteinkomplex aufwendig gereinigt, kristallisiert und die dreidimensionale Struktur von PqsBC mithilfe der Röntgenstrukturanalyse entschlüsselt. Das Ergebnis: „Der Komplex PqsBC formt eine Art Tunnel, der mal geöffnet und mal geschlossen ist“, sagt Witzgall. In der Strukturanalyse konnte er auch verschiedene Zwischenzustände identifizieren und davon ableiten, dass genau die Bereiche des Proteinkomplexes beweglich sind, die die Bindestelle für die Fettsäureketten umgeben. „Wir vermuten, dass PqsBC seinen Tunnel aufklappt, eine Fettsäurekette darin aufnimmt, den Tunnel verschließt und die Fettsäure dann auf das zweite Substrat von PqsBC überträgt. Danach klappt der Tunnel wieder auf und entlässt das fertige Signalmolekül“, sagt Witzgall.

Die dreidimensionale Struktur des Proteinkomplexes zeigt auch, dass der Tunnel genau so lang ist, dass ihn eine Fettsäurekette aus acht Kohlenstoffatomen ausfüllt. „Demnach sollte dies die bevorzugte Länge sein, die der Komplex verarbeitet“, sagt Witzgall.

„Es gibt schon seit längerer Zeit Hinweise auf eine erhöhte Flexibilität bei verwandten Proteinen. PqsBC ist nun aber das erste Beispiel für diese Proteinfamilie, bei dem die Beweglichkeit durch verschiedene Kristallstrukturen auch tatsächlich nachgewiesen wurde“, sagt Florian Witzgall. Die neuen Erkenntnisse zur Beweglichkeit von PqsBC eröffnen nun einen Ansatzpunkt für neuartige Medikamente. „Würden wir mit einem Wirkstoff die Bewegung von PqsBC einfrieren, könnten wir PqsBC gezielt hemmen und die Kommunikation von P. aeruginosa unterbrechen“, sagt Wulf Blankenfeldt.

Ihre Ergebnisse veröffentlichten die Wissenschaftler im Fachjournal ChemBioChem. In einem Youtube-Video ist der dynamische Mechanismus nachgebildet, in dem PqsBC durch Zuklappen das Molekül mit der Fettsäurekette binden kann.

Besuchen Sie den IWC